
A Semantic Overlay Network for Unstructured Peer-to-Peer Protocols

Junfeng Xie, Zhenhua Li and Guihai Chen
State Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 210093, P. R. China
{jfx, lizhenhua}@dislab.nju.edu.cn, gchen@nju.edu.cn

Abstract

Peer-to-Peer computing has become a popular net-
working paradigm for file sharing, distributed comput-
ing, collaborative working, etc. The widely used un-
structured Peer-to-Peer protocols mainly face two prob-
lems affecting their working efficiency: 1) inefficient
flooding-based search, 2) topology mismatch between the
overlay network and its underlying network. In this pa-
per, we propose to organize nodes into a semantic over-
lay network called CON which is composed of special
interest groups based on nodes’ contents. CON guides
the content search with semantic information so that it
avoids most of the flooding cost. In order to alleviate
the mismatch problem, nodes in CON initialize links
according to their underlay proximity. Simulation re-
sults show that our mechanism efficiently increases the
query success rate and reduces the traffic cost and query
latency. We also compare CON with the similar work,
which illuminates that CON performs better in many
aspects.

1. Introduction

In recent years, Peer-to-Peer systems have been
widely used as the base infrastructures of many In-
ternet applications, such as resource sharing (e.g., Bit-
Torrent [1], eDonkey [2]), collaborative working (e.g.,
Groove [4]), distributed computing (e.g., SETI@home
[7]) and so on. P2P systems are mainly organized into
three kinds of architectures: centralized, decentralized
unstructured and decentralized structured [16]. Cen-
tralized P2P systems, such as Napster [6], use index
servers to maintain a directory for shared files of peers
so that a participant can search for the location of the
desired content from those servers. The query initia-
tor then downloads files directly from the peers (rather
than servers) that hold them. Unfortunately, these
servers turn out to be system bottlenecks and also make

the system vulnerable to malicious attacks. On the
contrary, the decentralized protocols do not rely on
central servers for data retrieval and offer much bet-
ter scalability and resilience. Structured systems, such
as Chord [25] and CAN [20], use distributed hash ta-
ble (DHT) to strictly organize the placement of data
and the network topology. Unstructured systems, such
as Gnutella [3] and KaZaA [5], place documents and
nodes randomly, without correlation with the network
topology. Unstructured systems exhibit ease in topol-
ogy maintenance but face two main problems that se-
riously degrade their performance [22] [23]:

1) topology mismatch between the overlay net-
work and its underlying network,

2) inefficient flooding-based search for desired
content.

This paper focuses on the possible performance im-
provements of decentralized unstructured P2P systems.
We deal with the first problem by initializing overlay
links according to the underlay proximity when nodes
bootstrap and the flooding-based search is based on it.
For the second problem, we intend to forward the query
to the most relevant nodes by introducing a table called
file table appended to each file. Its entries point to
some of the nodes that also have this file, thus forming
a SIG (special interest group) corresponding to this file.
In this way, a semantic overlay network called CON
(content overlay network) is embedded into the exist-
ing overlay network. Now two kinds of complementary
search mechanisms are available: one is based on SIG,
the other on flooding. The CON-directed search has
high performance for it only queries peers with similar
interests and the flooding-based search is executed at
low cost in that the neighbors are connected with low
latency. In our system the flooding-based search is just
used as a complement to the CON-directed search, i.e.,
it is triggered as the compensation only when the scale
of the CON-directed search is not big enough. Besides,
a node can belong to multiple SIGs, and a SIG is also

978-1-4244-1890-9/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: Peking University. Downloaded on June 03,2010 at 05:54:39 UTC from IEEE Xplore. Restrictions apply.

able to adjust itself as nodes frequently join and leave
the system.

Simulation results show the improvement brought
by our method. In a Waxman-model network [27] ini-
tially with 2,500 nodes and 25,000 files, as file tables
are gradually filled, the latency per query decreases by
78% and the query success rate increases by 50%. Fur-
thermore, the traffic cost is also reduced by 56% and
the topology match is indeed improved for the stretch
decreases by 77%. Besides, with the same query success
rate, the average latency of the CON-directed search is
only 40% of the previous similar shortcut-based search
proposed by Sripanidkulchai et al. [24] and the stretch
is 50% of that.

The rest of this paper is structured as follows. Sec-
tion II reviews the related work. Section III presents
the detailed system design. Section IV is the perfor-
mance evaluation and Section V discusses more about
CON. Finally, we conclude the paper in section VI.

2. Related work

2.1. The search mechanisms

To the best of our knowledge, the work most related
to ours is due to Sripanidkulchai et al. [24]. They
use a shortcut list to record the recently visited nodes
from which files are downloaded and rank the short-
cuts based on some criterions. The rationale is also
to cluster nodes based on their interests for they real-
ize the existence of the so-called interest-based locality.
The query initiator first checks whether the nodes in
its shortcut list have the desired file and if not, turns
to the flooding-based search. In this sense, such one-
hop strategy is essentially different from our multi-hops
CON-based strategy. The other fundamental differ-
ences between the two systems are the perception of
similar interest as well as the mechanism to cluster
nodes.

Another perspective introduced by Tang et al. [26] is
not to cluster nodes with similar interest but to cluster
documents with similar semantics in identifier space. It
is intended for the structured protocol CAN [20] in that
they observe the natural correspondence between the
topology of CAN and the document’s latent semantic
indexing (LSI). LSI is used as a document’s identifier
for the insertion and retrieval of that document. As a
result, the relevant documents are placed close to each
other in the identifier space, therefore forming a sort
of document semantics cluster.

Some other work goes to great length to make the
selection of next hop more effectively. Random walk
proposed by Lv et al. [16] has better performance than

the flooding-based search in a Zipf-like or small-world
graph. Gia [8] uses biased random walk to forward
incoming query to its neighbor who has the highest ca-
pacity. Such choice is based on a simple intuition: the
more documents a node has, the more likely it will sat-
isfy query requirements. The overloads caused by such
biased selection is tackled by the use of flow control
token.

On contrary to Gia [8], Crespo et al. [9] try to in-
corporate neighbors’ semantic information to guide the
query forwarding direction. Routing index is used to
store the number of documents on each topic along the
path via each neighbor and the query will be forwarded
to the neighbor with the largest number of relevant doc-
uments. Such greedy mechanism guarantees to send
the query to the most promising candidate among its
neighbors, but the maintenance cost is non-negligible.

Like Crespo et al. [9], to make search more intel-
ligent, Kalogeraki et al. [12] add semantics into the
search mechanism. The most recent queries passed by
each neighbor is recorded in a node’s corresponding
peer profile. When a new query comes to that node, by
calculating the similarity between the new one and the
recorded ones, the neighbor satisfying the query with
the highest probability can be determined.

2.2. Topology mismatch

Researchers have proposed a number of methods
[21, 19] to alleviate the topology mismatch problem
of overlay networks. As classified by Gummadi et al.
[10], the proposed methods generally fall into three cat-
egories: Proximity Neighbor Selection (PNS), Proxim-
ity Route Selection (PRS) and Proximity Identifier Se-
lection (PIS). In our CON overlay network, nodes ini-
tialize links according to underlay proximity when they
bootstrap. Therefore, our method to alleviate topol-
ogy mismatch belongs to Proximity Neighbor Selection
(PNS).

The supernode method is popularly utilized in many
practical P2P systems, such as KaZaA [5] and the
Gnutella protocol version 0.6 [3]. Experiments by
Liang et al. [13] show that the mismatch problem is
indeed alleviated by using supernodes.

Liu et al. [14] propose LTM scheme in which each
peer issues a detector message so that the peers re-
ceiving the detector can record relative delay informa-
tion. Based on it a receiver detects and cut unnec-
essary links. The major drawback is that all peers
need to be synchronized so LTM requires the support
of the Network Time Protocol. Alternatively, Xiao et
al. [28] propose ACE in which every peer builds an
overlay MST among itself and its neighbors and then

Authorized licensed use limited to: Peking University. Downloaded on June 03,2010 at 05:54:39 UTC from IEEE Xplore. Restrictions apply.

optimizes the neighbor connections that are not on the
tree. However, ACE can only work with one-hop logical
neighbors, and the convergent speed is relatively slow.
As an improvement, Liu. et al. [15] introduce SBO
to optimize the overlay topology by identifying and re-
placing the mismatched connections. It has fast conver-
gent speed and does not need Network Time Protocol,
therefore overall, SBO outperforms ACE and LTM.

All the technologies mentioned above adjust the
overlay connectivity after its construction. Our
method, by comparison, takes topology-aware issue
into consideration while constructing the overlay net-
work.

3. System design

For each file, We intend to construct a SIG composed
of all the nodes that have this file therefore embed the
file table in the file, shown in Table 1. Each IP address
(in fact, it also includes the node’s id, port number,
etc) represents a SIG member, i.e., the node which also
has this file. n is not a fixed number but it is always
small (usually n ≤ 5) so that these n nodes are only a
small proportion of the whole SIG. Because of the high
dynamic of P2P network, the system prepares backup
nodes for each entry.

Table 1. file structure
file file table

content IP1 IP2 . . . IPn

To enable the CON-directed search, we utilize VSM
to represent files and queries as vectors in a Carte-
sian space. In information retrieval community, vari-
ous IR techniques are proposed to represent contents.
We adopt the most popular and well-studied statisti-
cal IR algorithm, vector space model (VSM) [17]. For
the file, the vector is used as its identifier and for the
query, it is the search criteria. The similarity between
a query and a file is measured as the cosine of the angle
between their vector representations:

similarity(q, f) = cos < ~q, ~f >=
~q · ~f

|~q||~f |

where ~q and ~f represent the vectors of the query q
and file f , respectively.

3.1. The solution to topology mismatch

Nodes initialize overlay links according to underlay
proximity when they bootstrap. The overall target is

to initialize the overlay layout consistent with its un-
derlying network. A newly joining node first contacts
a well-known server to get a list of nodes near itself.
However, the well-known server only knows a limited
number of nodes. As an improvement, the newly join-
ing node then contacts its neighbors’ neighbors to ad-
just its neighbor set in that these neighbors should be
near as well. This procedure can be performed recur-
sively several times, but the bandwidth consumption
will also be increased greatly. According to our simu-
lation experience, contacting neighbors one or two hops
away is good enough. Besides, a node periodically de-
tects its neighbors and its neighbors’ neighbors to ad-
just its neighbor set.

3.2. The design and utilization of CON

We need three thresholds in the search mechanism.

1. Maximum-candidate threshold (Tc) controls
the number of candidate peers to forward the
query.

2. Minimum-similarity threshold (Ts) defines
the low bound of the similarity between the query
and candidate peers to forward the query.

3. Relevance threshold (Tr) determines whether
a file is relevant enough to be returned to the ini-
tiator. It is introduced to return not only exactly
the same file requested by the query but also the
very relevant ones.

Suppose a node wants to search for the A.M. Turing
biography. It first creates a VSM vector for this query,
then calculates the similarity between this query and
each file it stores. The files with similarity beyond Ts

are picked and they are sorted by descendant similarity.
We choose the first Tc ones and because these files (e.g.,
the John von Neumann biography) are the most rele-
vant ones to this query, their corresponding SIGs are
regarded as the most promising candidates that should
have the desired file. Therefore the query is sent to the
members of these SIGs. If there are not enough (i.e.,
less than Tc) relevant files which may happen especially
when the initiator is a new comer and has few files, the
flooding-based search in overlay network is triggered to
compensate.

The intermediate nodes that receive the query de-
crease the TTL by 1 and forward it in the same way.
At the same time, their files whose similarity with the
query are beyond Tr are sent to the query initiator.
However, when the query’s TTL is 0, it is no longer
forwarded.

Authorized licensed use limited to: Peking University. Downloaded on June 03,2010 at 05:54:39 UTC from IEEE Xplore. Restrictions apply.

The query initiator regards the search is finished af-
ter a certain period, then it ranks all the received files
and returns them to the user. Besides, it joins the SIG
by notifying the nodes of the file table its existence and
these nodes deploy the FIFO strategy to insert the ini-
tiator into their relevant file tables.

To rank the table entries, let us first introduce two
concepts:

Definition 1 (Similarity(f1, f2))

similarity(f1, f2) = cos < ~f1, ~f2 >=
~f1 · ~f2

|~f1||~f2|

where f1 and f2 are two files whose vectors are ~f1 and
~f2.

Definition 2 (Similarity(n, f)) n is a node and f is
a file and Similarity(n, f) is the number of files with
similarity(fi, f) beyond Tr in node n. Intuitively, it
represents the relevance degree between n and f .

For file f , the order of table entries is determined
by their corresponding similarity(n, f) where n is the
node pointed. In this way, the entries are ranked based
on their relevance to its file and our search mechanism
is modified to only choose the first entries in the table
as candidates. This enhancement requires some band-
width consumption to calculate the similarity(n, f) as
well as an additional field in each table entry to record
it, but the advantage is twofold: First of all, such order
enables a query to converge quickly in the SIG graph
to nodes with the largest number of relevant files, thus
raising the success rate with fewer hops. The other
benefit is about motivation: the more files on a partic-
ular topic a user downloads, the higher her node ranks
in other SIG tables, therefore the more likely she will
serve others.

Lv et al. [16] have proven that the square-root repli-
cation optimizes the average search size as well as the
utilization rate. This strategy replicates a file propor-
tional to the square root of its query probability. To
archive this, c n

ri
replica (where c is a constant, n is the

total number of nodes in the system and ri is the num-
ber of a file’s replica) should be created after the query
initiator downloads its desired file. Lv et al. [16] have
proven that in the random walk system, it is just the
same with the number of probes it took before finding
the file. In our simulation, however, we will use this
formula directly and c is set as 0.01, ri is the order of
the file’s SIG graph, gotten by a DFS search and n is
set as 2,500. The distribution of these new replica is
as follows. Suppose the desired file is f and r replica

are created. The initiator ranks the nodes along the
search path according to their similarity(n, f) and the
first r ones are regarded as the candidates to store f .
Such strategy causes the Matthew effect based on the
rationale that the more files on a particular topic (e.g.,
the biographies of computer scientists) a user stores,
the more likely she will be interested in that replicated
one(i.e., the A. M. Turing biography) which she does
not already have. On the other hand, in the light of the
entry order, the candidates are also those most likely
to serve other relevant queries, so these replica also
increase their success probability to satisfy them.

A subtle problem is that several SIGs of the same
file may develop independently without any knowledge
of each other’s existence, in that the file insertion is not
broadcasted or some nodes may crash unexpectedly.

Figure 1. two independent SIGs of the same
file

To make this phenomenon more evident, Fig. 1
shows an example. Note that only CON links are
showed. Two independent SIGs (i.e., the one consisted
of node A, B and C and that consisted of node D, E, F
and G) of the A.M. Turing biography exist. They do
not know each other so if a query (initiated by node
H) for the Turing-relevant content is sent to node A,
it is only forwarded to node B and C. If the query is
sent to node D, it is also limited within {D, E, F, G}.
Therefore to broaden the search scope, it is necessary
to integrate these two SIGs. We archive this as follows.
Suppose node C and G both return node H’s desired
file. H asks C to make a DFS search in its SIG to find
out whether node G is in it. If not, it means a SIG
(that of G) disconnected with C is detected thereby C
creates a connection with G, and then it asks one of its
neighbors (e.g., B) to link with one of G’s neighbors
(e.g., F). In this way, the two SIGs are integrated.

4. Performance evaluation

4.1. Simulation methodology

The Internet node distance can be modeled as the
geometric distance approximately [18], so we model the

Authorized licensed use limited to: Peking University. Downloaded on June 03,2010 at 05:54:39 UTC from IEEE Xplore. Restrictions apply.

underlay latency between two nodes as the geomet-
ric distance in a 3-dimensional Euclidean space. In
general, Internet has the property that the nearer two
nodes are located, the more likely they have a direct
link. Waxman topology proposed in [27] is consistent
with this property for the interconnection probability
between two arbitrary nodes is

P (u, v) = αe−d/βL

where 0 ≤ α, β ≤ 1, d is the Euclidean distance
between them, and L is the maximum distance between
any two nodes. However, we require a 3-dimensional
topology and Waxman only provides a 2-dimensional
topology, so we set z = x+y

2 , assuming z depends on x
and y.

Three systems are compared: Gnutella, the CON-
based system (referred to as CON) and the shortcut-
based system [24] (referred to as shortcut). The simu-
lation involves 2,500 nodes with average degree 4, and
the TTL is set as 5. We deploy exact-match queries and
do not use the above thresholds but simply topic and
id to represent the file similarity, i.e., the equivalence
of topics means two files (or a file and a query) have
similarity larger than Ts. The size of the topic space is
500 and the size of file id space for each topic is 50. Ini-
tially, each node is arbitrarily allotted five topics, each
of which contains five files, randomly chosen out of its
space. The nodes in CON initialize their neighbor sets
based on links in its underlying network and for equal-
ity, the nodes in Gnutella and shortcut have the same
number of neighbors but chosen randomly. We perform
2,500 queries each time, and repeat 20 times sequen-
tially to represent the simulation length. To simulate
users’ bias in searching for files, desired files mainly
belong to its local topics. For convenience, the local
files are not retrieved so that the curves of Gnutella
are relatively stable.

For simplicity, we do not order the table entries as
mentioned above but just adopt the FIFO strategy.
The table size is fixed at 5. The SIG is structured as
undirected graph to broaden the search scope at some
maintenance cost. The size of the shortcut list is set as
5 as well.

4.2. Metrics

We choose the following metrics to comprehensively
measure the effectiveness of our method and compare
it with other relevant systems.

• Success rate: The probability of finding the de-
sired file before the search terminates. Remember
our search is exact match so it is relatively low.

It is one of the most critical metrics in designing
Peer-to-Peer systems.

• The average number of hops per query: It
shows how many hops on average are needed to
complete a successful query.

• The average latency per query: Considering
the topology mismatch, it is necessary to study the
sum of latency along the search path to estimate
the real delay of the query.

• The average number of messages per node
and the extra messages ratio: It is used to
measure the system overhead. The first one in-
cludes the cost to build CON as well as that for
search, and the second is the percentage of mes-
sages to maintain file tables.

• SIG rate: As we mix the flooding-based search
with the CON-directed search in CON, this met-
ric describes the contribution of the file table in
successful queries. Precisely, each step along the
query path is tagged as whether it is forwarded
based on SIG or flooding. Therefore it is possible
to calculate the ratio of CON-directed steps to all
steps.

• Stretch: The ratio of latency accumulated along
the overlay path to that between the query initia-
tor and file supplier. This metric is used to evalu-
ate the effectiveness of our mechanism to alleviate
topology mismatch problem.

4.3. Simulation results and analysis

Firstly, we examine the success rate, average latency
and hops which reflect the search efficiency of the three
systems.

0 1 2 3 4 5

x 10
4

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

simulation length(in #queries)

su
cc

es
s

ra
te

Gnutella
CON
shortcut

Figure 2. The success rate for queries.

Authorized licensed use limited to: Peking University. Downloaded on June 03,2010 at 05:54:39 UTC from IEEE Xplore. Restrictions apply.

The curves of Gnutella are rather smooth which
proves our prohibition against local retrieval is really
effective. Compared with Gnutella, CON performs the
same at first but archives a substantial improvement
as file tables are gradually filled. For the last 2,500
queries, the number of hops and latency in Fig. 4 and
3 are reduced to 35% and 31%, respectively. At the
same time, Fig. 2 shows its success rate increases from
10% to 16%.

0 1 2 3 4 5

x 10
4

100

150

200

250

300

350

400

450

simulation length(in #queries)

av
er

ag
e

la
te

nc
y

Gnutella
CON
shortcut

Figure 3. The average latency for queries.

CON also performs similarly with shortcut at first,
and then with the same success rate, it outperforms
shortcut in the number of hops and latency, e.g., for the
last 2,500 queries, the number of hops and latency are
75% and 56% of shortcut, respectively. The reduction
of latency is more than that of hops, meaning that the
mismatch problem is alleviated better in CON.

0 1 2 3 4 5

x 10
4

1

1.5

2

2.5

3

3.5

4

simulation length(in #queries)

av
er

ag
e

#h
op

s

Gnutella
CON
shortcut

Figure 4. The average number of hops for
queries.

Secondly, we study system overhead by calculating
the average number of messages per node. Because of
the different perceptions of message in CON and short-
cut, we only compare CON as well as replicated CON

(i.e., CON with the square-root replication mentioned
above) with Gnutella. we can see from Fig. 5 that the
average number of messages per node is reduced by
41% in CON and 48% in replicated CON, respectively.

0 1 2 3 4 5

x 10
4

160

180

200

220

240

260

280

300

320

340

360

simulation length(in #queries)

av
er

ag
e

#m
es

sa
ge

s Gnutella
CON
replicated CON

Figure 5. The average number of messages
per node.

Thirdly, we study whether the file table works by
examining the SIG rate for CON. Fig. 6 shows that as
folders and tables are filled, the rate obviously increases
from 5% to 88%, meaning that SIG plays an increas-
ingly important role in search, and we conclude that
the increase of query success rate is indeed archived
by the CON-directed search rather than the flooding-
based search.

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

simulation length(in #queries)

S
IG

 r
at

e

Figure 6. The SIG rate in CON, showing the
utilization of the file table.

Fourthly, we study the extra messages ratio in the
simulation. Fig. 7 plots that, because of our restriction
on table size, this value is relatively small, increasing
from 0.11% to 0.60%.

Fifthly, to examine whether the mismatch problem
is alleviated in CON and compare it with that of the

Authorized licensed use limited to: Peking University. Downloaded on June 03,2010 at 05:54:39 UTC from IEEE Xplore. Restrictions apply.

other systems, the stretch is studied. In Fig. 8, CON
reduces the stretch from 6.02 to 1.39, which is 24% of
Gnutella and 53% of shortcut, respectively.

0 1 2 3 4 5

x 10
4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

simulation length(in #queries)

ex
tr

a
m

es
sa

ge
s

ra
tio

Figure 7. The extra messages ratio in CON.

Finally, the query success rate is studied while nodes
continually crash and rejoin the system. We first ran-
domly select 250 nodes (10% of all) and make them
crash, then perform 5,000 queries. After that the 250
nodes rejoin the system, another 5,000 queries are per-
formed. This procedure is repeated for ten times. Fig.
9 plots that CON performs better than Gnutella both
when nodes crash and rejoin the system.

0 1 2 3 4 5

x 10
4

1

2

3

4

5

6

7

simulation length(in #queries)

st
re

tc
h

Gnutella
CON
shortcut

Figure 8. The stretch of Gnutella, CON and
shortcut.

5. Further discussion

The method we choose to cluster nodes with simi-
lar interest is to utilize content overlay network to link
them logically, which looks like the telephone confer-
ence. An alternative choice is to arrange files so that
relevant files are clustered geographically. That is, by
comparison, similar to the traditional conference, but

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

su
cc

es
s

ra
te

Gnutella
CON

Figure 9. The success rate of CON and
Gnutella when nodes continually crash and
rejoin the system.

the attendees are files rather than nodes. Tang et al.
[26], to a certain extent, use this strategy but they are
near in the node identifier space rather than its under-
lay proximity.

An interesting expanded utilization of content over-
lay network is based on the observation that tradi-
tional decentralized structured protocols unanimously
arrange nodes according to the predefined structure
such as ring, hypercube, etc. Though there is no doubt
that such designs have their benefits, using files rather
than nodes as the structure element has its own ad-
vantages. Let us take Chord [25] for example. The
overlay network is constructed according to underlay
proximity, but all files are organized as a Chord ring.
When a new file is inserted, its identifier strictly defines
its position in the ring. Its site in overlay network, on
contrary, is arbitrary.

With the construction of ring, it has all the merits a
structured protocol has, e.g., the guarantee to find an
existed file, the efficient route (logN hops where N is
the number of files) to locate it, etc. Additionally, if
VSM is used as the file identifier (thus the files similar
in semantics are near in the identifier space), it can also
ensure the match between the content semantics and
the underlying network, realizing the goal proposed in
Paragraph I. More importantly, the freedom for file to
select location facilitates the exploration of peer het-
erogeneity.

Similar with other structured protocols, the major
drawback is that table entries contain other files’ sites,
costly to maintain when nodes continually join and
leave the system. On one hand, we can use the con-
stant degree protocol such as Koorde [11] to minimize
the table size. On the other hand, piggyback should be
implemented to avoid unnecessary update operation.

Authorized licensed use limited to: Peking University. Downloaded on June 03,2010 at 05:54:39 UTC from IEEE Xplore. Restrictions apply.

Because of space limitation, the detail is omitted.

6. Conclusion

Inefficient flooding-based search and topology mis-
match are the major concerns in unstructured Peer-
to-Peer system design. This paper proposes several
techniques to alleviate these problems. Among them,
the most significant contributions are 1) the use of file
to form node special interest groups making the search
more efficient, 2) the construction of the overlay net-
work that well match its underlying network. Simu-
lation results show that such enhancements make the
query success rate higher, the response time shorter,
the system bandwidth consumption smaller, and the
topology match between the overlay network and its
underlying network better.

7. Acknowledgments

We thank the anonymous reviewers for their help-
ful comments. This work was supported by China
NSF grants (60573131, 60673154), Jiangsu Provincial
NSF grants (BK2005208, BG2007039), and China 973
project (2006CB303004). The Conference Participa-
tion is supported by Nokia Bridging the World Pro-
gram.

References

[1] BitTorrent website. http://www.bittorrent.com.
[2] eDonkey website. http://www.edonkey.com.
[3] Gnutella website. http://gnutella.wego.com.
[4] Groove Virtual Office website. http://www.groove.net.
[5] KaZaA website. http://www.kazaa.com.
[6] Napster website. http://www.napster.com.
[7] SETI@home website. setiathome.ssl.berkeley.edu.
[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham,

and S. Shenker. Making gnutella-like P2P systems
scalable. Proceedings of SIGCOMM 2003, pages 407–
418, 2003.

[9] A. Crespo and H. Garcia-Molina. Routing indices
for peer-to-peer systems. ICDCS 2002., pages 23–32,
2002.

[10] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of DHT routing
geometry on resilience and proximity. Proceedings of
SIGCOMM 2003, 3, 2003.

[11] M. Kaashoek and D. Karger. Koorde: A simple
degree-optimal distributed hash table. Proceedings of
the 2nd IPTPS, pages 98–107, 2003.

[12] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-
Yazti. A local search mechanism for peer-to-peer
networks. Proceedings of the eleventh international
CIKM, pages 300–307, 2002.

[13] J. Liang, R. Kumar, and K. Ross. Under-
standing KaZaA. available at http://cis.poly.edu/
ross/papersUnderstandingKaZaA.pdf,2004.

[14] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang. Location-
Aware Topology Matching in P2P Systems. Proceed-
ings of IEEE INFOCOM, pages 2220–2230, 2004.

[15] Y. Liu, L. Xiao, and L. Ni. Building a scalable bi-
partite P2P overlay network. Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th Inter-
national, 2004.

[16] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks.
Proceedings of the 16th ICS, pages 84–95, 2002.

[17] W. Michael, D. Zlatko, and R. Elizabeth. Matrices,
vector spaces, and information retrieval. SIAM Re-
view, 41(2):335–362, 1999.

[18] T. Ng and H. Zhang. Towards global network position-
ing. Proceedings of the First ACM SIGCOMM Work-
shop on Internet Measurement, pages 25–29, 2001.

[19] C. Plaxton, R. Rajaraman, and A. Richa. Accessing
Nearby Copies of Replicated Objects in a Distributed
System. Proceedings of the Symposium of Parallel Al-
gorithms and Architectures, pages 311–320, 1997.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
2001.

[21] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server
selection. Proceedings of IEEE INFOCOM, 3, 2002.

[22] M. Ripeanu and I. Foster. Mapping the Gnutella Net-
work: Macroscopic Properties of Large-Scale Peer-to-
Peer Systems. First IPTPS, 68, 2002.

[23] S. Saroiu, P. Gummadi, S. Gribble, et al. A mea-
surement study of peer-to-peer file sharing systems.
Proceedings of MMCN, 2002.

[24] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient
content location using interest-based locality in peer-
to-peer systems. Proceedings of IEEE INFOCOM,
2003.

[25] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. Proceedings
of SIGCOMM 2001, 31(4):149–160, 2001.

[26] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer infor-
mation retrieval using self-organizing semantic overlay
networks. Proceedings of SIGCOMM 2003, pages 175–
186, 2003.

[27] B. Waxman. Routing of multipoint connections.
IEEE Journal on Selected Areas in Communications,
6(9):1617–1622, 1988.

[28] L. Xiao, Y. Liu, and L. Ni. Improving unstructured
peer-to-peer systems by adaptive connection establish-
ment. Computers, IEEE Transactions on, 54(9):1091–
1103, 2005.

Authorized licensed use limited to: Peking University. Downloaded on June 03,2010 at 05:54:39 UTC from IEEE Xplore. Restrictions apply.

